Herbaceous and Woody Root Biomass, Seasonal Changes in Root Turnover, and Arbuscular Mycorrhizal and Ectomycorrhizal Colonization during Primary Succession in Post-Mining Sites

Author:

Kaneda Satoshi,Zedníková Petra,Frouz JanORCID

Abstract

Seasonal changes in the biomass and length of fine roots and their growth into ingrowth cores were measured in a chronosequence of post-mining sites represented by 6-, 16-, 22-, and 45-year-old study sites, located on spoil heaps after brown coal mining in the Sokolov coal mining district. The depth distribution of roots differed between herbs and woody species and also with succession age. At the 22-year-old site, the greatest root biomass was found in the fermentation layer (248.9 ± 113.4 g m2) and decreased with depth. In the case of herbaceous root biomass, the greatest root biomass was found in the 16-year-old site (63.7 ± 15.2 g m2), again in the fermentation layer, which decreased with depth. Overall root biomass increased with succession age, reaching its highest value in the 45-year-old site. In younger sites, the root biomass was dominated by herbs and grasses, whereas woody roots dominated in older sites. After one year, the root biomass in ingrowth cores reached up to one quarter of in situ biomass, which would suggest a low turnover rate. However, the difference between the minimum and the maximum value during the course of one year represents more than half of the mean value. Analysis of the number of arbuscules on roots of Plantago lanceolata sown in soil from all succession stages revealed extensive colonization by arbuscular mycorrhizal fungi in early succession (14.2 ± 0.3 mm root−1), decreasing with succession age, and reaching the lowest value in the 22-year-old site (2.4 ± 0.08 mm root−1) before increasing in the oldest site. Colonization of roots by ectomycorrhizal fungi increased with succession age, reaching a maximum in the 16-year-old site. In comparison with the extent of ectomycorrhizal colonization in relation to root length, the greatest length of ectomycorrhiza-colonized roots was found in the 22-year-old site; hence, the pattern was the opposite of the one observed in arbuscular mycorrhiza-colonized roots.

Funder

Ministry of Education Youth and Sports

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3