The impact of elevated ozone on growth, secondary metabolites, production of reactive oxygen species and antioxidant response in an anti-diabetic plant Costus pictus

Author:

Ansari NaushadORCID,Yadav Durgesh S.ORCID,Agrawal MadhoolikaORCID,Agrawal Shashi B.ORCID

Abstract

Tropospheric ozone (O3) is a global air pollutant that causes deleterious effect to the plants. The present objective was to investigate the growth response, foliar injury, reactive oxygen species (ROS) accumulation and metabolites production in Costus pictus D. Don (insulin plant) at two developmental stages under ambient O3 (AO) and ambient + 20 ppb O3 (EO) using the open-top chambers (OTCs). A significant reduction in leaf area and total biomass was observed under EO as compared with AO. EO induced ROS (.O2– and H2O2) and lipid peroxidation led to more significant foliar injury and solute leakage. Image obtained from the fluorescence microscope and biochemical estimations reflected high levels of ROS under EO. A differential response in flavonoids and anthocyanin content, ascorbic acid, and antioxidative enzymes such as catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) has been observed with the growth stages of C. pictus plant. EO exposure negatively affected thiols and protein contents at all the growth stages. Secondary metabolites (tannins, lignin, saponins and alkaloids) were increased in both leaves and rhizomes due to EO, whereas phytosterols were induced only in rhizomes. Apart from other metabolites, the key bioactive compound (corosolic acid) showed its synthesis to be stimulated under EO at later growth stage. The study concludes that O3 is a potent stimulating factor for changing the levels of secondary metabolites and antioxidants in an antidiabetic C. pictus plants as it can alter its medicinal properties.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3