Diversity for morphological traits, flowering time and leaf isoflavone content among ecotypes of Trifolium subterraneum L. subsp. yanninicum and their relationships with site of origin

Author:

Enkhbat GereltsetsegORCID,Nichols Phillip G H,Foster Kevin J,Ryan Megan H,Inukai Yoshiaki,Erskine WilliamORCID

Abstract

Trifolium subterraneum L. subsp. yanninicum is a pasture legume that is widely grown in medium and high rainfall areas of southern Australia and shows waterlogging tolerance. This study investigated diversity within subsp. yanninicum corresponding to eco-geographic variables, which may help to identify adapted parents with new traits for genetic improvement. Diversity for 10 morphological traits, flowering time and leaf isoflavone content was investigated using 108 ecotypes derived from wild Mediterranean populations and 10 cultivars, grown as spaced plants. Among the ecotypes, the range of flowering time was 94–149days after sowing, and contents of formononetin, genistein and biochanin A were 0.05–1.38%, 0.73–2.33% and 0.15–2.10% of dry matter, respectively. Leaf markings also varied considerably. Leaf size and petiole length were correlated at each growth stage. Later flowering genotypes had larger leaves, longer petioles, longer internodes and thicker stems at flowering, but smaller leaves and shorter petioles at both 63 and 88days after sowing. Contents of genistein and biochanin A were unrelated, but both were negatively associated with formononetin. Flowering time had a weak positive influence on genistein and biochanin A, but a weak negative influence on formononetin. All traits among the ecotypes (except stem diameter and leaf mark crescent size) were significantly correlated with at least one of 22 eco-geographic variables from their collection sites. Precipitation and altitude were more influential than temperature. The study found sufficient diversity to broaden the narrow genetic base of current subsp. yanninicum cultivars; however, other agronomically important traits also need to be considered. Further diversity may result from targeted collection, particularly in areas not represented in annual legume genebanks.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3