Arsenic adsorption onto aluminium-substituted goethite

Author:

Tufo Ana E.,dos Santos Afonso María,Sileo Elsa E.

Abstract

Environmental contextGoethite, commonly found in soils, is often partially substituted by Al and strongly influences the mobility of arsenic in the environment. The adsorption of AsV onto goethites with increasing Al substitution was explored, finding that Al incorporation decreases AsV sorption per gram of adsorbent, and that a low level of Al incorporation enhances the adsorption per unit area. Structures of the complexes formed between AsV and the oxy(hydr)oxide surface, at different pH values, are proposed by studying the changes in the surface charges of the adsorbed and non-adsorbed substituted and non-substituted goethites. AbstractAluminium and iron oxy(hydr)oxides in nature are often partially substituted by other elements and strongly influence the mobility of arsenic in the environment. Because goethite is commonly found in soils, and the oxide is easily substituted, in the present work, the adsorption of AsV onto several Al-substituted goethites was explored in order to determine how substitution affects the adsorption process. Three samples with increasing Al content (GAl0, GAl3.78 and GAl7.61) were prepared and fully characterised. The variations in AsV adsorption under different conditions, as well as the variations of the particle surface charge, were analysed. The results showed that the removal capacity of Al-goethites is determined by the Al content. The adsorption maxima per gram followed the trend GAl0> GAl3.78> GAl7.61, indicating that Al incorporation decreases AsV sorption. Adsorption per surface area decreased in the order GAl3.78> GAl0> GAl7.61, implying that a small incorporation of Al enhances the adsorption properties of the surface. The stoichiometry of the probable surface complexes formed with the contaminant at different pH values is proposed, by analysis of all the experimental results obtained before and after AsV adsorption. These surface complexes were used to fit the experimental data with good agreement, and the formation and acidity constants were also estimated.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3