The Role of Photosynthesis in Flowering of the Long-Day Plant Sinapis alba

Author:

Bodson M,King RW,Evans LT,Bernier G

Abstract

Flowering can be induced in the long-day plant Sinapis alba in 8-h photoperiods provided that the irradiance is close to that at which leaf photosynthesis is light-saturated (e.g. 96 J m-2 s-1). Three such 8-h cycles result in 10% flowering and six are required for full flowering, whereas only one long-day cycle of 16-20 h duration at a much lower irradiance (25 J m-2 s-1) is required for full flowering. High irradiance during the single long day promotes flowering when given for the first 8 h of a 16-h photoperiod, but is inhibitory over the last 8 h. Photosynthetic CO2 uptake is crucial for this response to high irradiance, as both its inhibitory and promotive effects on flowering are reversed by the removal of atmospheric CO2 during the period of high irradiance. Compared with plants kept in short days (8-h photoperiod), export of 14C-labelled assimilates from the leaf during a 24-h period was only 50-60% greater in plants exposed to a long day (20-h photoperiod), because plants in short days compensated to a degree for their shorter photosynthetic period by mobilizing leaf reserves during darkness. However, flowering can occur with no evident enhancement of supply of assimilate to the shoot apex, for example following dis- placement of the short day or on removal of atmospheric CO2 during the last 12 h of exposure to a 20-h long day. Also, the flowering response to radiant flux density during the second half of a long day shows an optimum between 15 and 70 J m-2 s-1, with reduced flowering both above and below this irradiance. Thus, although there is no absolute requirement for long days to induce flowering in S. alba, light reactions cther than photosynthesis probably contribute to photoperiodic induction in this species.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3