Preliminary estimation of fat depth in the lamb short loin using a hyperspectral camera

Author:

Rahman S.,Quin P.,Walsh T.,Vidal-Calleja T.,McPhee M. J.,Toohey E.,Alempijevic A.

Abstract

The objectives of the present study were to describe the approach used for classifying surface tissue, and for estimating fat depth in lamb short loins and validating the approach. Fat versus non-fat pixels were classified and then used to estimate the fat depth for each pixel in the hyperspectral image. Estimated reflectance, instead of image intensity or radiance, was used as the input feature for classification. The relationship between reflectance and the fat/non-fat classification label was learnt using support vector machines. Gaussian processes were used to learn regression for fat depth as a function of reflectance. Data to train and test the machine learning algorithms was collected by scanning 16 short loins. The near-infrared hyperspectral camera captured lines of data of the side of the short loin (i.e. with the subcutaneous fat facing the camera). Advanced single-lens reflex camera took photos of the same cuts from above, such that a ground truth of fat depth could be semi-automatically extracted and associated with the hyperspectral data. A subset of the data was used to train the machine learning model, and to test it. The results of classifying pixels as either fat or non-fat achieved a 96% accuracy. Fat depths of up to 12 mm were estimated, with an R2 of 0.59, a mean absolute bias of 1.72 mm and root mean square error of 2.34 mm. The techniques developed and validated in the present study will be used to estimate fat coverage to predict total fat, and, subsequently, lean meat yield in the carcass.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3