Thermal stress induces heat shock protein 70 and apoptosis during embryo development in a Neotropical freshwater fish

Author:

Sales Camila F.,Lemos Flavia S.,Morais Roberto D. V. S.,Thomé Ralph G.,Santos Helio B.,Pinheiro Ana P. B.,Bazzoli Nilo,Rizzo ElizeteORCID

Abstract

Fish embryos are particularly vulnerable to temperature changes, with the effects varying with developmental stage. The major aim of the present study was to analyse the relationship between apoptosis and heat shock protein (HSP) 70 during embryo development under thermal stress conditions. To this end, Prochilodus lineatus embryos at the blastopore closure stage were subjected to one of three thermal treatments for 1h (Group 1, 25°C (control); Group 2, 20°C; Group 3, 30°C) and then examined at 0, 4 and 8h posttreatment (h.p.t.). The viability of embryos was highest in Group 1 (81.33±16.65%), followed by Group 3 and Group 2 (75.33±12.10% and 68.67±16.86% respectively), with significant difference between Groups 1 and 2 (P<0.05). At 0h.p.t., embryos subjected to thermal stress (Group 3) had a significantly higher number of terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL)- and caspase-3-labelled cells, and a lower number of HSP70-positive cells than those in the control group. At 4h.p.t., there was a decrease in the TUNEL reaction and an increase in HSP70 in embryos in Group 3. At 8h.p.t., the size of Group 3 embryos was significantly smaller than that of Group 1 embryos. The results indicate a cytoprotective role for HSP70, regulating caspase-3-mediated apoptosis during embryo development of P. lineatus; however, this mechanism is not effective in controlling embryo viability and larval malformations.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3