Chilling tolerance in maize: agronomic and physiological approaches

Author:

Farooq Muhammad,Aziz Tariq,Wahid Abdul,Lee Dong-Jin,Siddique Kadambot H. M.

Abstract

Maize is a C4 plant species with higher temperature optima than C3 plant species. Growth and productivity of maize are severely constrained by chilling stress. Here, we review the effects of chilling stress on growth, phenology, water and nutrient relations, anatomy, and photosynthesis in maize. Several management strategies to cope with chilling stress are also proposed. In maize, chilling stress is known to reduce leaf size, stem extension and root proliferation, disturb plant water relations, and impede nutrient uptake. Chilling stress in maize is a complex phenomenon with physiological and biochemical responses at both cellular and whole-organ level. CO2 assimilation by leaves is reduced mainly due to membrane damage, photoinhibition, and disturbed activity of various enzymes. Enhanced metabolite flux through the photorespiratory pathway increases the oxidative load on tissues as both processes generate reactive oxygen species (ROS). Injury caused by ROS to macromolecules under chilling stress is one of the major deterrents to growth. Low-molecular-weight osmolytes, including glycinebetaine, proline, and organic acids, are crucial in sustaining cellular function under chilling stress. Plant growth substances such as salicylic acid, gibberellic acid, and abscisic acid modulate the response of maize to chilling stress. Polyamines and several enzymes act as antioxidants and reduce the adverse effects of chilling stress. Chilling tolerance in maize can be managed through the development and selection of chilling-tolerant genotypes by breeding and genomic approaches. Agronomic approaches such as exogenous application of growth hormones and osmoprotectants to seeds or plants, and early vigour, can also aid in chilling tolerance.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3