Effect of ridge tillage, no-tillage, and conventional tillage on soil temperature, water use, and crop performance in cold and semi-arid areas in Northeast China

Author:

He Jin,Li Hongwen,Kuhn N. J.,Wang Qingjie,Zhang Xuemin

Abstract

In cold and semi-arid Northeast China, insufficient soil accumulative temperature and low water use efficiency (WUE) are the limiting factors for the further development of agriculture. Ridge tillage (RT) has been proposed to improve soil temperature and water conservation. Data from a 3-year field experiment conducted at two locations (Sujiatun and Lanxi) in Northeast China were used to compare RT, no-tillage (NT), and conventional tillage (CT) in a spring maize cropping system. At both sites, RT and NT significantly (P < 0.05) increased mean soil temperature to 0.10 m depth, relative to CT, by 0.7–2.4°C in the cold season during the spring maize growing stage. Mean soil moisture depletion in the RT treatment was greater by 1.2–4.1% (Sujiatun) and 0.6–3.0% (Lanxi) than in NT and CT, respectively. Mean maize yields over 3 years for RT were ~9.9% greater than for CT, whereas the yield advantage in the NT treatment was only slight. In Sujiatun, WUE was 8.0% and 8.6% greater under RT than under NT and CT, respectively, and in Lanxi, WUE was 7.7% and 9.6% greater under RT than NT and CT. Ridge tillage is recommended to the farmers to obtain higher crop yield and WUE in Northeast China.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3