Effect of rhubarb (Rheum spp.) root on in vitro and in vivo ruminal methane production and a bacterial community analysis based on 16S rRNA sequence

Author:

Kim Kyoung Hoon,Arokiyaraj Selvaraj,Lee Jinwook,Oh Young Kyoon,Chung Ho Young,Jin Gwi-Deuk,Kim Eun Bae,Kim Eun Kyoung,Lee Yoonseok,Baik Myunggi

Abstract

The objective of this study was to evaluate the anti-methanogenic effect of rhubarb (Rheum spp.) on in vitro, in vivo, and bacterial community composition using Quantitative Insights into Microbial Ecology sequencing. Rhubarb root powder was tested at different concentrations (0, 0.33, 0.67, and 1.33 g/L) in vitro, and all incubations were carried out in triplicate two runs on separate days. Concentrations of 0.67 and 1.33 g/L rhubarb significantly (P < 0.05) reduced methane production and the acetate : propionate ratio compared with those of the Control, without adverse effects on total volatile fatty acids and total gas production. In the second in vivo trial, four Hanwoo (Korean native) steers (live bodyweight, 556 ± 46 kg) with a ruminal cannula were housed individually in metabolic stalls and fed a basal diet twice daily in equal amounts at 0900 hours and 2100 hours. The before rhubarb treatment (before treatment) duration was 24 days for all steers; 14 days were used for diet adaptation and 10 days were used for gas samples collected 1, 2, and 3 h after the morning feeding on Days 3, 5, 7, and 9. We used three syringe needles passed through the ruminal cannula stopper at different time points as a simple and rapid method to sample rumen gas. Thereafter, three mesh bags containing 30 g of sliced rhubarb root each were placed at different depths in the rumen of each steer for 14 days (after treatment), and gas samples were collected on Days 4, 7, 10, 12, and 13. The results showed a significant (P < 0.05) decrease in methane concentration from the rhubarb-treated steers and provide the evidence that this method would be useful for in vivo screening of anti-methanogenic feed additives or plant material. Furthermore, 16s RNA sequencing after treatment showed increases in the numbers of Prevotella, and Lactobacillus, but decreases in Methanobrevibacter. In conclusion, rhubarb had an anti-methanogenic effect in vitro and in vivo, and the increase in the number of Prevotella shifted ruminal fermentation towards propionate production.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3