Inhibition effect of kaolinite on the development of antibiotic resistance genes in Escherichia coli induced by sublethal ampicillin and its molecular mechanism

Author:

Lai Xiaolin,Wu PingxiaoORCID,Ruan Bo,Liu Juan,Liu Zehua,Zhu Nengwu,Dang Zhi

Abstract

Environmental contextAntibiotic resistance by microorganisms in the natural environment poses a threat to ecosystems and public health. We report findings suggesting kaolinite can effectively inhibit the development of antibiotic resistance genes in microorganisms, and present a new understanding of the molecular mechanisms that promote the development of antibiotic resistance. These results are critical to mitigating environmental and public health risks resulting from the abuse of antibiotics. AbstractAntibiotic resistance and antibiotic resistance genes (ARGs) in the natural environment pose a threat to ecosystems and public health; therefore, better strategies are needed to mitigate the emergence of resistance. This study examined the expression of ARGs in Escherichia coli (E. coli) after exposure to sub-MIC (minimum inhibitory concentration) antibiotics for 15 days in the presence and absence of kaolinite. The results of the real-time polymerase chain reaction (PCR) showed that the expression levels of the eight target genes of E. coli adhering to kaolinite were relatively decreased, and the MIC results also indicated that the final resistance was lower than that of the strains without kaolinite. A close relationship between E. coli and kaolinite was also revealed, as well as a unique interfacial interaction. In addition, the differential protein expression was further analysed to detect proteins and genes associated with ARGs mutations, and then the underlying mechanisms of cell growth and metabolism were identified under low dose ampicillin stress to elucidate the role of kaolinite in the process. Molecular mechanisms analysis determined that when cells adhering to kaolinite were stressed, transport of ampicillin to the periplasmic space was reduced, and the redox metabolism of bacteria was promoted to combat the harsh environment. Moreover, cells synthesised related peptides or proteins under the action of ribosomal proteins to prevent toxic damage. Therefore, this work not only provides new insights into the cellular response to antibiotic stress, but also provides a topic for more research on methods to delay the emergence of ARGs.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3