Long-term responses in soil solution and stream-water chemistry at Hubbard Brook after experimental addition of wollastonite

Author:

Shao Shuai,Driscoll Charles T.,Johnson Chris E.,Fahey Timothy J.,Battles John J.,Blum Joel D.

Abstract

Environmental context Calcium silicate was added to a forest watershed in New Hampshire, USA, to accelerate its recovery from acid rain. The acid–base status of soil and stream quality improved over the 12-year study, with the most pronounced response in the upper elevation and the upper soil of the watershed. A total of 95% of the added calcium and 87% of the added silica were retained in the watershed over the study period. Abstract In October 1999, 3450kgha–1 of wollastonite (CaSiO3) was applied to Watershed 1 at the Hubbard Brook Experimental Forest in New Hampshire, USA, with the objective of restoring calcium that had been depleted from soil-exchange sites by chronic inputs of acid deposition. After the treatment, the concentrations and fluxes of calcium and dissolved silica significantly increased in both soil solution and stream water throughout Watershed 1, as did the acid-neutralising capacity. The concentrations and fluxes of inorganic monomeric aluminium significantly decreased. The treatment improved the acid–base status and decreased the potential for aluminium toxicity in stream water, especially in the lower reaches of the watershed. Approximately 4.7% of the added calcium and 17% of the added silica from the wollastonite treatment was exported from Watershed 1 in stream water by the end of 2010. Meanwhile, ~1825mmolm–2 of the added calcium and 2125mmolm–2 of the added silica were either transported to lower mineral soil horizons – as particulate wollastonite, or as dissolved solutes (calcium 77.6mmolm–2; silica 592.2mmolm–2), thus contributing to increases in soil pools – or were taken up by vegetation and incorporated into internal calcium and silica cycles of the watershed ecosystem. This experimental wollastonite addition was an effective tool for mitigating the acidification of the ecosystem and restoring the calcium status and forest health of this base-poor watershed.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3