Large root systems: are they useful in adapting wheat to dry environments?

Author:

Palta Jairo A.,Chen Xing,Milroy Stephen P.,Rebetzke Greg J.,Dreccer M. Fernanda,Watt Michelle

Abstract

There is little consensus on whether having a large root system is the best strategy in adapting wheat (Triticum aestivum L.) to water-limited environments. We explore the reasons for the lack of consensus and aim to answer the question of whether a large root system is useful in adapting wheat to dry environments. We used unpublished data from glasshouse and field experiments examining the relationship between root system size and their functional implication for water capture. Individual root traits for water uptake do not describe a root system as being large or small. However, the recent invigoration of the root system in wheat by indirect selection for increased leaf vigour has enlarged the root system through increases in root biomass and length and root length density. This large root system contributes to increasing the capture of water and nitrogen early in the season, and facilitates the capture of additional water for grain filling. The usefulness of a vigorous root system in increasing wheat yields under water-limited conditions maybe greater in environments where crops rely largely on seasonal rainfall, such as the Mediterranean-type environments. In environments where crops are reliant on stored soil water, a vigorous root system increases the risk of depleting soil water before completion of grain filling.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3