Rumen bacteria and feed efficiency of beef cattle fed diets with different protein content

Author:

Parra M. C.ORCID,Costa D.F.ORCID,Meale S. J.,Silva L. F. P.ORCID

Abstract

Context Beef cattle feed efficiency is challenged in northern Australian production systems due to the limited dietary protein, leading to changes in rumen bacterial populations and fermentation outcomes. Aims Two types of diets with different dietary protein contents were used to evaluate changes in rumen bacterial composition and diversity, aiming to correlate rumen bacterial populations with feed and rumen efficiency parameters. Methods In total, 90 Brahman steers (341 ± 45 kg BW) were selected for this trial, but rumen fluid was collected from 85 Brahman steers, at 0 and 4 h after feeding, during a feed-efficiency trial. The steers were fed with a low-protein diet, including 70% rumen-degradable protein and 8.8% crude protein (CP) for 60 days, followed by a high-protein diet for the same period (13.5% CP). Liveweight and dry-matter intake measurements, as well as urine, faeces and rumen fluid samples, were collected to determine feed and rumen efficiency, and ruminal bacteria composition. Steers were clustered into groups using principal component analysis and Ward’s hierarchical method, and differences in feed-efficiency parameters among clusters were compared. Key results Rumen bacterial composition differed between diets (P < 0.01) and diversity changes were more related to bacterial richness (P < 0.01). In a low-protein diet, there were four distinct clusters of steers, on the basis of rumen bacteria, in which the most efficient steers, with a better residual feed intake (P = 0.06) and lower rumen ammonia concentration (P < 0.01) before feeding, had the highest relative abundance of Prevotella (P < 0.01). While in a high-protein diet, no differences were observed on feed or rumen fermentation parameters among steer clusters. Conclusion In a low-protein diet, rumen bacterial shifting might contribute to upregulate nitrogen recycling, favouring feed efficiency. Implications Identifying ruminal bacterial populations involved in nitrogen recycling upregulation might be useful to select the most efficient cattle fed low-protein diets.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3