A feasibility study of Boree Salt body mapping in the Adavale Basin using passive seismic data

Author:

Guo Peng,Saygin Erdinc,Talukder Asrar

Abstract

Hydrogen plays a pivotal role in the global energy transition and may require underground storage. So far salt cavern storage is the only proven technology for underground hydrogen storage. The Boree Salt in the Adavale Basin, mostly at depths from 1 to 2.5 km and up to 550 m thick, consists predominantly of halite and is deemed suitable for hydrogen storage. However, current maps are inadequate. Recently passive seismic data (ambient noise) have received much interest for subsurface imaging. The main signal from passive data is surface waves (usually below 2 Hz). The capability of surface waves for the Boree Salt body mapping is examined. Parameters of seismic sensor spacing, the dominant frequencies of the surface waves, and data noise levels are all considered. It is demonstrated that surface waves from ambient noise can map the Boree Salt bodies with a survey distance of ~40 km. Between frequencies of 0.12 and 0.25 Hz, results from the latter have better resolution because of a shorter wavelength. Moving to higher frequencies of 0.5 and 1 Hz, however, the resolution becomes worse, because the depth sensitivity of surface waves moves to the shallower part of the model with increasing frequencies, rendering them incapable of effectively probing the targeted depths. For signal/noise ratio above five, station spacing can be as large as 1 km without compromising quality. Therefore, cost-effective and environmentally friendly passive seismic data can be a good alternative to the traditional active-source data for deep salt body imaging.

Publisher

CSIRO Publishing

Reference12 articles.

1. Australian salt basins – options for underground hydrogen storage.;The APPEA Journal,2023

2. Ennis-King J, Michael K, Strand J, Sander R, Green C (2021) ‘Underground storage of hydrogen: Mapping out the options for Australia (Project RP1-1.04 Deliverable 5: Final Summary Report).’ (Future Fuels CRC)

3. Lower oceanic crust formed by in situ melt crystallization revealed by seismic layering.;Nature Geoscience,2022

4. Space-time monitoring of seafloor velocity changes using seismic ambient noise.;ESS Open Archive,2023

5. Guo P, Saygin E, Talukder A (2023b) Adavale Basin Salt Body Mapping – Stage 1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3