Lower oceanic crust formed by in situ melt crystallization revealed by seismic layering

Author:

Guo PengORCID,Singh Satish C.ORCID,Vaddineni Venkata A.,Grevemeyer IngoORCID,Saygin ErdincORCID

Abstract

AbstractOceanic crust forms at mid-ocean spreading centres through a combination of magmatic and tectonic processes, with the magmatic processes creating two distinct layers: the upper and the lower crust. While the upper crust is known to form from lava flows and basaltic dykes based on geophysical and drilling results, the formation of the gabbroic lower crust is still debated. Here we perform a full waveform inversion of wide-angle seismic data from relatively young (7–12-Myr-old) crust formed at the slow-spreading Mid-Atlantic Ridge. The seismic velocity model reveals alternating, 400–500 m thick, high- and low-velocity layers with ±200 m s−1 velocity variations, below ~2 km from the oceanic basement. The uppermost low-velocity layer is consistent with hydrothermal alteration, defining the base of extensive hydrothermal circulation near the ridge axis. The underlying layering supports that the lower crust is formed through the intrusion of melt as sills at different depths, which cool and crystallize in situ. The layering extends up to 5–15 km distance along the seismic profile, covering 300,000–800,000 years, suggesting that this form of lower crustal accretion is a stable process.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3