Comparison of grain yields and N2O emissions on Oxisol and Vertisol soils in response to fertiliser N applied as urea or urea coated with the nitrification inhibitor 3,4-dimethylpyrazole phosphate

Author:

De Antoni Migliorati Massimiliano,Bell Mike,Lester David,Rowlings David W.,Scheer Clemens,de Rosa Daniele,Grace Peter R.

Abstract

The potential for elevated nitrous oxide (N2O) losses is high in subtropical cereal cropping systems in north-east Australia, where the fertiliser nitrogen (N) input is one single application at or before planting. The use of urea coated with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) has been reported to substantially decrease N2O emissions and increase crop yields in humid, high-intensity rainfall environments. However, it is still uncertain whether this product is similarly effective in contrasting soil types in the cropping region of north-east Australia. In this study the grain yield response of sorghum (Sorghum bicolor L. Moench) to rates of fertiliser N applied as urea or urea coated with DMPP were compared in crops grown on a Vertisol and an Oxisol in southern Queensland. Seasonal N2O emissions were monitored on selected treatments for the duration of the cropping season and the early stages of a subsequent fallow period using a fully automated high-frequency greenhouse gas measuring system. On each soil the tested treatments included an unfertilised control (0kgNha–1) and two fertilised treatments chosen on the basis of delivering at least 90% of seasonal potential grain yield (160 and 120kgNha–1 on the Vertisol and Oxisol respectively) or at a common (suboptimal) rate at each site (80kgNha–1). During this study DMPP had a similar impact at both sites, clearly inhibiting nitrification for up to 8 weeks after fertiliser application. Despite the relatively dry seasonal conditions during most of the monitoring period, DMPP was effective in abating N2O emissions on both soils and on average reduced seasonal N2O emissions by 60% compared with conventional urea at fertiliser N rates equivalent to those producing 90% of site maximum grain yield. The significant abatement of N2O emissions observed with DMPP, however, did not translate into significant yield gains or improvements in agronomic efficiencies of fertiliser N use. These results may be due to the relatively dry growing season conditions before the bulk of crop N acquisition, which limited the exposure of fertiliser N to large losses due to leaching and denitrification.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3