Mechanisms underlying photosynthetic acclimation to high temperature are different between Vitis vinifera cv. Syrah and Grenache

Author:

Gallo Agustina E.,Perez Peña Jorge E.,Prieto Jorge A.ORCID

Abstract

Photosynthesis acclimation to high temperature differs among and within species. Grapevine intra-specific variation in photosynthetic acclimation to elevated temperature has been scarcely assessed. Our objectives were to (i) evaluate the mechanisms underlying long-term acclimation of photosynthesis to elevated temperature in grapevine, and (ii) determine whether these responses are similar among two varieties. A warming experiment with well irrigated Grenache and Syrah field-grown plants was performed during two growing seasons comparing plants exposed at ambient temperature (control) with plants in open-top chambers (heating) that increased mean air temperature between 1.5 and 3.6°C. Photosynthetic acclimation was assessed through the response of net assimilation (An), Rubisco carboxylation rate (Vcmax) and electron transport rate (Jmax), at leaf temperatures from 20 to 40°C. Our results evidenced different mechanisms for photosynthetic acclimation to elevated temperature. Compared with control, Grenache heated increased An, maintaining higher Vcmax and Jmax at temperatures above 35°C. By contrast, Syrah heated and control presented similar values of An, Vcmax and Jmax, evidencing an adjustment of photosynthesis without increasing C assimilation. Both varieties increased the optimum temperature for An, but to a lesser extent when growth temperature was higher. Our study provides evidence that grapevine varieties present different acclimation mechanisms to expected warming.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3