Chitosan and spermine enhance drought resistance in white clover, associated with changes in endogenous phytohormones and polyamines, and antioxidant metabolism

Author:

Zhang Yan,Li Zhou,Li Ya-Ping,Zhang Xin-Quan,Ma Xiao,Huang Lin-Kai,Yan Yan-Hong,Peng Yan

Abstract

The interaction of chitosan and polyamines (PAs) could be involved mitigating drought stress in white clover (Trifolium repens L.). This research aimed to determine the effect of chitosan and PAs, and co-application of chitosan and PAs on improving drought tolerance associated with growth, phytohormones, polyamines and antioxidant metabolism. Plants were pretreated with or without 1 g L–1 chitosan, 0.5 mM spermine, or 1 g L–1 chitosan + 0.5 mM spermine, then subjected to drought induced by polyethylene glycol (PEG) 6000 (–0.5 MPa) in growth chambers for 14 days. Exogenous chitosan and spermine improved the level of PAs by regulating arginine decarboxylases, S-adenosyl methionine decarboxylase, copper-containing amine oxidase and polyamine oxidase activity, and expression of the genes encoding these enzymes under drought. Application of exogenous chitosan improved ABA content under normal and drought conditions. In addition, chitosan and spermine significantly enhanced the levels of cytokinin and GA, but reduced IAA levels during drought stress. Exogenous chitosan and spermine improved antioxidant defence, including enzyme activity, gene expression and the content of ascorbate and glutathione compounds, leading to a decline in superoxide anion radicals, H2O2 and malondialdehyde, effectively mitigating drought-induced oxidative damage. Other protective metabolites, such as total phenols and flavonoids, increased considerably under application of chitosan and spermine. These results suggest that chitosan-induced drought tolerance could be involved in PA metabolism, changes in endogenous phytohormones and antioxidant defence in white clover. Co-application of chitosan and spermine was more effective than either chitosan or spermine alone in mitigating drought stress.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3