High night temperature decreases leaf photosynthesis and pollen function in grain sorghum

Author:

Prasad P. V. Vara,Djanaguiraman Maduraimuthu

Abstract

High temperature stress is an important abiotic stress limiting sorghum (Sorghum bicolor (L.) Moench) yield in arid and semiarid regions. Climate models project greater increases in the magnitude of night temperature compared with day temperature. We hypothesise that high night temperature (HNT) during flowering will cause oxidative damage in leaves and pollen grains, leading to decreased photosynthesis and seed-set, respectively. The objectives of this research were to determine effects of HNT on (1) photochemical efficiency and photosynthesis of leaves, and (2) pollen functions and seed-set. Sorghum plants (hybrid DK-28E) were exposed to optimum night temperature (ONT; 32 : 22°C, day maximum :  night minimum) or HNT (32 : 28°C, day maximum : night minimum) for 10 days after complete panicle emergence. Exposure to HNT increased thylakoid membrane damage and non-photochemical quenching. However, HNT decreased chlorophyll content, quantum yield of PSII, photochemical quenching, electron transport rate and photosynthesis of leaves as compared with ONT. Exposure to HNT increased the reactive oxygen species (ROS) level of leaves and pollen grains. Lipid molecular species analyses in pollen grains showed that HNT decreased phospholipid saturation levels and altered various phospholipid levels compared with ONT. These changes in phospholipids and greater ROS in pollen grains may be responsible for decreased pollen function, leading to lower seed-set.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3