The 9-Fluorenylmethoxycarbonyl (Fmoc) Group in Chemical Peptide Synthesis – Its Past, Present, and Future

Author:

Li WenyiORCID,O'Brien-Simpson Neil M.,Hossain Mohammed Akhter,Wade John D.ORCID

Abstract

The chemical formation of the peptide bond has long fascinated and challenged organic chemists. It requires not only the activation of the carboxyl group of an amino acid but also the protection of the Nα-amino group. The more than a century of continuous development of ever-improved protecting group chemistry has been married to dramatic advances in the chemical synthesis of peptides that, itself, was substantially enhanced by the development of solid-phase peptide synthesis by R. B. Merrifield in the 1960s. While the latter technology has continued to undergo further refinement and improvement in both its chemistry and automation, the development of the base-labile 9-fluorenylmethoxycarbonyl (Fmoc) group and its integration into current synthesis methods is considered a major landmark in the history of the chemical synthesis of peptides. The many beneficial attributes of the Fmoc group, which have yet to be surpassed by any other Nα-protecting group, allow very rapid and highly efficient synthesis of peptides, including ones of significant size and complexity, making it an even more valuable resource for research in the post-genomic world. This review charts the development and use of this Nα-protecting group and its adaptation to address the need for more green chemical peptide synthesis processes.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3