Rooting depth and leaf hydraulic conductance in the xeric tree Haloxyolon ammodendron growing at sites of contrasting soil texture

Author:

Xu G.-Q.,Li Y.

Abstract

An experiment was conducted on Haloxylon ammodendron C.A. Mey, a small xeric tree. Soil water content, soil evaporation, leaf water potential, leaf transpiration rate and stomatal conductance were measured at the two sites that contrast in soil texture: sandy and heavy textured, 8 km apart on the southern periphery of Gurbantonggut Desert, Central Asia, during the 2005 and 2006 growing seasons. Leaf specific hydraulic conductance was calculated from the measurements, and root distributions of plants grown at the two sites were quantified by whole-root system excavation. In general, plants grown in sandy soil experienced better water status than in heavy textured soil. Low soil evaporation loss is not the main reason for this better plant water status at sandy site. Plants in sandy soil developed much deeper root systems, larger root surface areas and higher root: leaf surface area ratio than in heavy textured soil, which facilitated plants acquiring more water and surviving the prolonged drought period. Plants growing at light textured sites should have an advantage in acclimatising to the changed water conditions of the future. Plants at the more sandy sites have a larger buffering capacity to excessive variation in ambient conditions.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3