Morphology and Rubisco turnover characteristics of perennial ryegrass breeding populations after two and four cycles of divergent selection for long or short leaf length

Author:

Khaembah Edith N.,Gastal François,Carre Serge,Irving Louis J.,Barre Philippe,Matthew Cory

Abstract

Perennial ryegrass populations previously subjected to two or four cycles of selection for short or long leaf length were studied to determine the response of morphological traits to selection and interaction to determine yield. Measured morphological traits were leaf length, leaf appearance interval, ligule appearance interval, leaf elongation duration, leaf elongation rate, tiller number, tiller dry weight, and herbage dry matter. Additionally, Rubisco concentration during leaf development was measured to determine the association of Rubisco turnover with morphological characteristics and yield. Rubisco was measured and modelled as a three-parameter (D, peak Rubisco concentration; G, time of D; and F, curve width measure), log-normal curve. Leaf length, leaf elongation rate, tiller weight, and plant dry matter diverged after two cycles of selection and further divergence occurred, with these traits being, respectively, 35, 28, 53, and 61% greater in the long- than the short-leaved plants after four cycles of selection. Opposite trends were displayed by Rubisco turnover, with selection for long leaves co-selecting for increased Rubisco turnover time and selection for short leaves resulting in increased leaf Rubisco concentration. There was indication of coupling of leaf appearance with Rubisco turnover. Across populations, multivariate analysis indicated that plant yield was associated with Rubisco concentration rather than Rubisco turnover. The association between higher yield and lower Rubisco concentration could be targeted in the breeding of high-yielding, nitrogen-efficient forage grasses. Plant yield was mainly associated with increased leaf area, indicating that yield could be improved by selecting for longer leaves and faster rates of leaf expansion.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3