Author:
Hermosilla Txomin,Ruiz Luis A.,Kazakova Alexandra N.,Coops Nicholas C.,Moskal L. Monika
Abstract
Precise knowledge of fuel conditions is important for predicting fire hazards and simulating fire growth and intensity across the landscape. We present a methodology to retrieve and map forest canopy fuel and other forest structural parameters using small-footprint full-waveform airborne light detection and ranging (LiDAR) data. Full-waveform LiDAR sensors register the complete returned backscattered signal through time and can describe physical properties of the intercepted objects. This study was undertaken in a mixed forest dominated by Douglas-fir, occasionally mixed with other conifers, in north-west Oregon (United States). We extracted two sets of LiDAR metrics using pulse detection and waveform modelling and then constructed several predictive models using forward stepwise multiple linear regression. The resulting models explained ~80% of the variability for many of the canopy fuel and forest structure parameters: aboveground biomass (R2=0.84), quadratic mean diameter (R2=0.82), canopy height (R2=0.79), canopy base height (R2=0.78) and canopy fuel load (R2=0.79). The lowest performing models included basal area (R2=0.76), stand volume (R2=0.73), canopy bulk density (R2=0.67) and stand density index (R2=0.66). Our results indicate that full-waveform LiDAR systems show promise in systematically characterising the structure and canopy fuel loads of forests, which may enable accurate fire behaviour forecasting that in turn supports the development of prevention and planning policies.
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献