Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies

Author:

Bariana H. S.,Brown G. N.,Bansal U. K.,Miah H.,Standen G. E.,Lu M.

Abstract

Stem rust susceptibility of European wheats under Australian conditions posed a significant threat to wheat production for the early British settlers in Australia. The famous Australian wheat breeder, William Farrer, tackled the problem of stem rust susceptibility through breeding fast-maturing wheat cultivars. South-eastern Australia suffered a severe stem rust epidemic in 1973, which gave rise to a national approach to breeding for rust resistance. The National Wheat Rust Control Program was set up in 1975, modelled on the University of Sydney’s own rust resistance breeding program, at the University of Sydney Plant Breeding Institute, Castle Hill (now Cobbitty). Back-crossing of a range of sources of resistance provided genetically diverse germplasm for evaluation in various breeding programs. Current efforts are directed to building gene combinations through marker-assisted selection. Major genes for resistance to stem rust and leaf rust are being used in the back-crossing program of the ACRCP to create genetic diversity among Australian germplasm. Stripe rust and to a lesser extent leaf rust resistance in the Australian germplasm is largely based on combinations of adult plant resistance genes and our knowledge of their genomic locations has increased. Additional genes, other than Yr18/Lr34 and Yr29/Lr46, appeared to control adult plant resistance to both leaf rust and stripe rust. Two adult-plant stem rust resistance genes have also been identified. The development of selection technologies to achieve genotype-based selection of resistance gene combinations in the absence of bioassays has evolved in the last 5 years. Robust molecular markers are now available for several commercially important rust resistance genes. Marker-assisted selection for rust resistance is performed routinely in many wheat-breeding programs. Modified pedigree and limited back-cross methods have been used for breeding rust-resistant wheat cultivars in the University of Sydney wheat-breeding program. The single back-cross methodology has proved more successful in producing cultivars with combinations of adult plant resistance genes.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3