Detection of new adult plant leaf rust resistance loci in a Tunisian wheat landrace Aus26670

Author:

Baranwal DeepakORCID,Bansal Urmil,Bariana HarbansORCID

Abstract

AbstractTransfer of leaf resistance genes into elite lines can assist in developing future wheat cultivars and mitigate economic losses caused by the leaf rust pathogen, Puccinia triticina Erikss. (Pt). Some previously reported leaf rust resistance QTL have been challenged by aggressive Pt pathotypes. This experiment aims to detect genetically diverse resistance QTL using a Tunisian landrace, Aus26670, which confers a high level of adult plant leaf rust resistance against Australian Pt pathotypes. One hundred nineteen F7 recombinant inbred lines (RILs) were generated after crossing Aus26670 and a susceptible line Avocet ‘S’ (AvS). The Aus26670/AvS RIL population was evaluated against mixture of five Pt pathotypes under field conditions for two years. The same RIL population was also screened using three Pt pathotypes individually in the greenhouse under controlled conditions. Genetic analysis of the seedling leaf rust response against Pt104-2,3,6, (7) confirmed the presence of an all-stage resistance (ASR) gene, Lr13. The RIL population was genotyped using a targeted genotyping-by-sequencing (tGBS) assay, and Lr13 was mapped in the 153.9–182.1 Mb region in chromosome 2BS. QTL analysis suggested the involvement of three genomic regions/adult plant resistance genes (APR) namely QLr.sun-1BL/Lr46, QLr.sun-5DL and QLr.sun-7DS, in controlling leaf rust resistance. Data of seedling assays, known marker survey, and comparison of genomic regions detected in this study with previously reported APR indicated the uniqueness of QLr.sun-5DL (559.7 Mb) and QLr.sun-7DS (11 Mb). Both QTL represent new additions to the APR toolbox.

Funder

Grains Research and Development Corporation

Australian Centre for International Agricultural Research

University of Sydney

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3