The development of a data-matching algorithm to define the ‘case patient’

Author:

Cox Shelley,Martin Rohan,Somaia Piyali,Smith Karen

Abstract

Objectives. To describe a model that matches electronic patient care records within a given case to one or more patients within that case. Method. This retrospective study included data from all metropolitan Ambulance Victoria electronic patient care records (n = 445 576) for the time period 1 January 2009–31 May 2010. Data were captured via VACIS (Ambulance Victoria, Melbourne, Vic., Australia), an in-field electronic data capture system linked to an integrated data warehouse database. The case patient algorithm included ‘Jaro–Winkler’, ‘Soundex’ and ‘weight matching’ conditions. Results. The case patient matching algorithm has a sensitivity of 99.98%, a specificity of 99.91% and an overall accuracy of 99.98%. Conclusions. The case patient algorithm provides Ambulance Victoria with a sophisticated, efficient and highly accurate method of matching patient records within a given case. This method has applicability to other emergency services where unique identifiers are case based rather than patient based. What is known about the topic? Accurate pre-hospital data that can be linked to patient outcomes is widely accepted as critical to support pre-hospital patient care and system performance. What does this paper add? There is a paucity of literature describing electronic matching of patient care records at the patient level rather than the case level. Ambulance Victoria has developed a complex yet efficient and highly accurate method for electronically matching patient records, in the absence of a patient-specific unique identifier. Linkage of patient information from multiple patient care records to determine if the records are for the same individual defines the ‘case patient’. What are the implications for practitioners? This paper describes a model of record linkage where patients are matched within a given case at the patient level as opposed to the case level. This methodology is applicable to other emergency services where unique identifiers are case based.

Publisher

CSIRO Publishing

Subject

Health Policy

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3