Assessing record linkage between health care and Vital Statistics databases using deterministic methods

Author:

Li Bing,Quan Hude,Fong Andrew,Lu Mingshan

Abstract

Abstract Background We assessed the linkage and correct linkage rate using deterministic record linkage among three commonly used Canadian databases, namely, the population registry, hospital discharge data and Vital Statistics registry. Methods Three combinations of four personal identifiers (surname, first name, sex and date of birth) were used to determine the optimal combination. The correct linkage rate was assessed using a unique personal health number available in all three databases. Results Among the three combinations, the combination of surname, sex, and date of birth had the highest linkage rate of 88.0% and 93.1%, and the second highest correct linkage rate of 96.9% and 98.9% between the population registry and Vital Statistics registry, and between the hospital discharge data and Vital Statistics registry in 2001, respectively. Adding the first name to the combination of the three identifiers above increased correct linkage by less than 1%, but at the cost of lowering the linkage rate almost by 10%. Conclusion Our findings suggest that the combination of surname, sex and date of birth appears to be optimal using deterministic linkage. The linkage and correct linkage rates appear to vary by age and the type of database, but not by sex.

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3