Osmotic adjustment of young sugar beets (Beta vulgaris) under progressive drought stress and subsequent rewatering assessed by metabolite analysis and infrared thermography

Author:

Wedeking Rita,Mahlein Anne-Katrin,Steiner Ulrike,Oerke Erich-Christian,Goldbach Heiner E.,Wimmer Monika A.

Abstract

The main objective of this work was to provide the chronology of physiological and metabolic alterations occurring under drought and demonstrate how these relate to a phenotypic approach (infrared thermal imaging, IRT). This should provide tools to tailor phenotyping approaches for drought tolerance and underlying metabolic alterations. In the present study, destructive analysis of growth and cell morphology, water status, osmotic adjustment, metabolic changes and membrane damage were combined with non-destructive determination of leaf temperature using infrared thermography (IRT) in 6-week-old sugar beets subjected to progressive drought stress and subsequent rewatering. Different methods were suitable for the characterisation of the dynamic development of distinct stress phases: although IRT allowed detection of initial impairment of transpiration within 1 day of drought stress, destructive methods allowed us to distinguish a phase of metabolic adjustment including redirection of carbon flow into protective mechanisms and a subsequent phase of membrane destabilisation and cellular damage. Only the combination of invasive and non-invasive methods allowed for the differentiation of the complete sequence of physiological changes induced by drought stress. This could be especially beneficial for the selection of phenotypes that are adapted to early drought. During rewatering, sugar beet shoots rapidly re-established water relations, but membrane damage and partial stomatal closure persisted longer, which could have an impact on subsequent stress events. During the onset of secondary growth, taproots required more time to recover the water status and to readjust primary metabolites than shoots.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3