Abstract
In previous descriptions of wind-slope interaction and the spread rate of wildland fires it is assumed that the separate effects of wind and slope are independent and additive and that corrections for these effects may be applied to spread rates computed from existing rate of spread models. A different approach is explored in the present paper in which the upslope component of the fire's buoyant velocity is used with the speed and direction of the ambient wind to produce effective values of wind speed and direction that determine the rate of spread vector. Thus the effective wind speed can replace the ambient wind speed in any suitable fire spread model and provide a description of the combined effects on the fire behavior. The difference between current and threshold values of the effective wind speed also can be used to determine whether fire will spread in a given fuel type. The model is tested with data from experiments reported by Weise (1993) in which fire spread was in response to variation in both wind speed and slope angle. The Weise spread rate data were satisfactorily correlated using dimensional methods and the observed spread rate was reasonably well predicted with an existing rate of spread model. Directional aspects of the model were not tested because the Weise (1993) study did not include winds with a cross-slope component.
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献