Fire regimes of the Southern Appalachians may radically shift under climate change

Author:

Robbins Zachary J.ORCID,Loudermilk E. LouiseORCID,Mozelewski Tina G.ORCID,Jones KateORCID,Scheller Robert M.ORCID

Abstract

Abstract Background Increased drought due to climate change will alter fire regimes in mesic forested landscapes where fuel moisture typically limits fire spread and where fuel loads are consistently high. These landscapes are often extensively modified by human land use change and management. We forecast the influence of varying climate scenarios on potential shifts in the wildfire regime across the mesic forests of the Southern Appalachians. This area has a long history of fire exclusion, land use change, and an expanding wildland urban interface. We considered interactions among climate, vegetation, and anthropogenic influences to forecast future fire regimes and changes to the forest structure. We used climate scenarios representing divergent drought patterns (overall drought trend and interannual variability) within a process-based fire model that captures the influence of climate, fuels, and fire ignition on wildfire patterns and suppression. Results Compared to simulations using historical climate (1972–2018), future total burned area (2020–2100: 782,302.7 (716,655.0–847,950.3) ha) increased by 42.3% under high drought variability (1,134,888.4 (1,067,437.2–1,202,339.6) ha), 104.8% under a substantial increase in drought trend (1,602,085.7 (1,511,837.5–1,692,334.0) ha), and 484.7% when combined (4,573,925.0 (4,434,910.5–4,712,939.5) ha). Landscape patterns of fire exclusion and suppression drove the spatial variability of fire return intervals (FRI). Our projections indicate wide spatial variability in future fire regimes with some areas experiencing multiple fires per decade while others experience no fire. More frequent fires corresponded with increased oak prevalence and a reduction in the biomass of mesic hardwoods and maple; however, mesic hardwoods remained prevalent under all fire intervals because of their contemporary dominance. Conclusions Our study illustrates how future drought–fire–management interactions and a history of fire exclusion could alter future fire regimes and tree species composition. We find that increasing trends in drought magnitude and variability may increase wildfire activity, particularly in areas with minimal fire suppression. In ecosystems where fuel moisture (and not load) is the standard limitation to fire spread, increased pulses of drought may provide the conditions for more fire activity, regardless of effects on fuel loading. We conclude the effects of climate and human management will determine the novel conditions for both fire regime and ecosystem structure.

Funder

North Carolina State University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3