Indicator patches: exploiting spatial heterogeneity to improve monitoring systems

Author:

Stokes C. J.,Yeaton R. I.,Bayer M. B.,Bestelmeyer B. T.

Abstract

When choosing which environmental attributes to monitor in assessing disturbance, it is important to consider not only which metric will provide the most sensitive indicator of disturbance, but also the spatial considerations of where in the landscape that metric will be most responsive to change. Degradation in landscapes is often unevenly expressed because: (i) disturbance is spatially localised, (ii) landscape elements differ in their sensitivity to disturbance, and (iii) degradation following localised disturbance is spatially contagious. The spatial heterogeneity of degradation has proven to be a key obstacle to rangeland monitoring (e.g. where the initiating processes of broad-scale degradation are concentrated in landscape locations that are not detected by surveys) but can also provide opportunities to focus monitoring efforts. We propose that the effectiveness of monitoring could be enhanced by identifying and selectively monitoring ‘indicator patches’, i.e. specific landscape locations that provide the most management-relevant and timely information about the consequences of a monitored disturbance. We tested and demonstrated the utility of the ‘indicator patch’ concept in the rangelands of the Succulent Karoo in southern Africa. We contrasted the grazing response of dominant ‘representative’ vegetation, with responses of interspersed patches of distinct vegetation associated with zoogenic mounds. Since mound vegetation is more palatable and preferentially grazed by sheep, we tested whether mounds could serve as ‘indicator patches’ in providing a sensitive measure of grazing disturbance. Percentage canopy cover measurements in dominant off-mound vegetation provided a poor indicator of grazing disturbance (although more intensive plant size measurements did reveal grazing impacts on plant population dynamics). In contrast, vegetation on mounds displayed patterns of changes in species abundances that were easier to detect and useful for interpreting and quantifying the effects of grazing. Mound vegetation could, therefore, be used as ‘indicator patches’ and targeted for exclusive sampling as a sensitive method for monitoring rangeland condition and detecting early warnings of vegetation change. This approach could be widely employed to better harness the extensive knowledge base regarding the patchy, spatially localised nature of degradation-initiating processes in numerous other landscapes. Routinely incorporating this understanding into the design of monitoring programs could improve the effectiveness of sampling effort, allow detection of more subtle trends (changes), and provide earlier warning of impending degradation so remedial action can be taken before degradation becomes severe and widespread.

Publisher

CSIRO Publishing

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3