Coffee plantations can strongly sequester soil organic carbon at high altitudes in Brazil

Author:

França Emmeline M.,Silva Carlos A.,Zinn Yuri L.ORCID

Abstract

Context Soil organic carbon (SOC) affects all soil-based environmental services, and can be readily depleted upon cultivation. SOC concentrations are often higher in mountains than in lowlands due to lower temperatures slowing microbial activity and organic decomposition. However, the effects of altitudinal differences on SOC changes upon cultivation are mostly unknown. Aims We posed the question: when cultivated, are high-SOC mountain soils more likely to be depleted or are more stable under lower temperatures? Methods We assessed SOC concentrations and stocks (to a 40 cm depth) under comparable native forest and coffee (Coffea arabica L.) stands, both at two different altitudes (940 and 1260 m a.s.l.) along a mountain range in Brazil. The two soils were Inceptisols with similar 11° slope, and under native forests showed strong acidity, low fertility and cation exchange capacity. Key results Mean SOC concentrations under forests were relatively high, varying between 4.3% (0–5 cm depth) and 1.05% (20–40 cm depth) and were not significantly affected by altitude. The effects of cultivation varied with altitude: at 940 m, SOC concentrations decreased under coffee at the 0–5 cm depth, but increased below 10 cm depth at 1260 m, when compared to the native forest control. Conclusions SOC stocks under native forest and coffee stands were similar at 940 m, but the SOC stock under coffee stands at 1260 m increased by ca. 30 Mg ha−1. Implications These results are a promising indication that well-managed coffee stands can preserve or sequester SOC in higher altitudes, thus suggesting tropical mountain range soils are not highly susceptible to SOC losses upon conversion to perennial crops.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3