Soil organic carbon sequestration under Araucaria angustifolia plantations but not under exotic tree species on a mountain range

Author:

Zinn Yuri LopesORCID,Cardoso RicardoORCID,Silva Carlos AlbertoORCID

Abstract

ABSTRACT Plantation forests can be efficient C sinks in biomass and soil organic carbon (SOC), but the latter depends on many factors, including climate. Tropical humid, mountain areas have cooler temperatures, slowing microbial decomposition, and thus can store considerable SOC. However, the effects of forest plantations on SOC of these montane areas are still poorly studied. Here, we aimed to assess changes in SOC, and related soil properties, after conversion of native rainforest to plantations of five tree species, with rotation cycles varying from 7 to 30 years, on the Mantiqueira Range, Minas Gerais, Brazil. We measured SOC contents and stocks (0.00-0.40 m layer) under a native montane rainforest (control) and plantations of Eucalyptus, Pinus, Cunninghamia, Cupressus and Araucaria, all planted in 3 × 3 m spacing, at an altitude of ca. 1,300 m, marked by humid and cool climate, where SOC contents are naturally high. Soil organic carbon varied from 55 g kg -1 under Eucalyptus to 105 g kg -1 under Araucaria (0.00-0.05 m layer), decreasing in depth (0.20-0.40 m) to the still high values of 20-40 g kg -1 . Soil organic carbon stocks for the top 0.20 m were also high, reaching ca. 140 Mg ha -1 under Araucaria, significantly higher value than the native forest (ca. 90 Mg ha -1 , p<0.05), which did not differ from the other species. Soil organic carbon stocks were not affected in the 0.20-0.40 m soil layer, whereas soil structure patterns changed under some species, without however resulting in bulk density changes, and pH decreased under Araucaria. Such data showed large SOC stocks under montane native forests can not only be preserved upon conversion to forest plantations, but considerable SOC sequestration can be achieved in 30-years rotation cycles plantations of indigenous Araucaria angustifolia, marked by more open canopies and greater understory biomass.

Publisher

Revista Brasileira de Ciencia do Solo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3