Abstract
Very young apricot leaves behave like the young leaves of most plants; that is, [14C]sucrose is formed as the main product of 14CO2 photosynthesis, and also when the leaves are supplied with [14C]glucose. [14C]sorbitol is not produced, and is poorly metabolized when fed to the leaf. Expanding leaves behave differently: [14C]sorbitol and [14C]sucrose are formed in similar amounts from both 14CO2 and [14C]glucose; and when [14C]sorbitol is supplied, it is readily metabolized and utilized for growth. Mature leaves are different again. They form [14C]sorbitol as the main product from 14CO2 and from [14C]glucose, and they do not metabolize [14C]sorbitol at all. Thus during development, apricot leaves gain but then lose the ability to utilize sorbitol. They also gain and keep the ability to synthesize sorbitol. This suggests that different biochemical paths exist for sorbitol formation and utilization, and that these paths are differently developed in the various stages of leaf development.
Although the very young leaves did not synthesize sorbitol from CO2 or glucose, they contained it as their major sugar. Translocation behaviour was therefore studied. Neither the very young leaves nor the expanding leaves export any photosynthate, but the mature leaf rapidly translocates carbohydrate, mainly in the form of sorbitol, to the younger leaves as well as the rest of the plant. [14C]sorbitol supplied to the mature leaf can be recovered in that form from the very young leaf on the same shoot. This further establishes the role of sorbitol in apricot as a specific transport carbohydrate.
Subject
Plant Science,Agronomy and Crop Science
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献