Application of genome-editing systems to enhance available pig resources for agriculture and biomedicine

Author:

Lee Kiho,Farrell Kayla,Uh Kyungjun

Abstract

Traditionally, genetic engineering in the pig was a challenging task. Genetic engineering of somatic cells followed by somatic cell nuclear transfer (SCNT) could produce genetically engineered (GE) pigs carrying site-specific modifications. However, due to difficulties in engineering the genome of somatic cells and developmental defects associated with SCNT, a limited number of GE pig models were reported. Recent developments in genome-editing tools, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9 system, have markedly changed the effort and time required to produce GE pig models. The frequency of genetic engineering in somatic cells is now practical. In addition, SCNT is no longer essential in producing GE pigs carrying site-specific modifications, because direct injection of genome-editing systems into developing embryos introduces targeted modifications. To date, the CRISPR/Cas9 system is the most convenient, cost-effective, timely and commonly used genome-editing technology. Several applicable biomedical and agricultural pig models have been generated using the CRISPR/Cas9 system. Although the efficiency of genetic engineering has been markedly enhanced with the use of genome-editing systems, improvements are still needed to optimally use the emerging technology. Current and future advances in genome-editing strategies will have a monumental effect on pig models used in agriculture and biomedicine.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3