Author:
Tian L. H.,Bell L. W.,Shen Y. Y.,Whish J. P. M.
Abstract
Conventional rainfed mixed crop–livestock systems of western China lack high-quality forage and restrict livestock production. This study explored the forage potential from wheat and its effects on subsequent grain yield. Different cutting times were imposed on winter wheat (Triticum aestivum) at Qingyang, Gansu Province, in two growing seasons, and the effect of nitrogen (N) topdressing rates (0, 60, and 120 kg N/ha) on grain yield recovery was explored. Results showed the potential to produce 0.8–1.6 t DM/ha of wheat forage with high nutritive value when cut before stem elongation (GS 30). In the wetter year, cutting before stem elongation did not delay crop development significantly (<3 days at anthesis and 5 days at maturity), but grain yields were reduced by 17–28% compared with the uncut crop (5.8 t DM/ha), mainly due to reductions in number of spikes per m2 and, consequently, number of grains per m2. In both seasons, more forage biomass was available if crops were cut later than GS 32, but this came with large reductions (>62%) in grain yield and delays in crop development (>9 days or 131 degree-days). Crops cut later than GS 30 had greatly reduced harvest index, tillers per m2, and total N uptake but higher grain protein content. There was no significant effect of N topdressing rate on grain yield, although provided the crop was cut before GS 30, higher rates of N increased maturity biomass and crop N uptake by replacing N removed in cut biomass. This study showed that physiological delay of wheat due to cutting was not significant. The forage harvested from winter wheat before stem elongation could be a valuable feed resource to fill the feed gap in western China.
Subject
Plant Science,Agronomy and Crop Science
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献