Effect of Mowing on Wheat Growth at Seeding Stage

Author:

Li Song1,Wang Shaoyu1,Ye Wenjie1,Yao Yaxin1,Sun Fengli1,Zhang Chao1ORCID,Liu Shudong1,Xi Yajun1

Affiliation:

1. College of Agronomy, Northwest A&F University, Yangling 712100, China

Abstract

Winter wheat is used as forage at the tillering stage in many countries; however, the regrowth pattern of wheat after mowing remains unclear. In this study, the growth patterns of wheat were revealed through cytological and physiological assessments as well as transcriptome sequencing. The results of agronomic traits and paraffin sections showed that the shoot growth rate increased, but root growth was inhibited after mowing. The submicroscopic structure revealed a decrease in heterochromatin in the tillering node cell and a change in mitochondrial shape in the tillering node and secondary root. Analysis of the transcriptome showed the number of differentially expressed genes (DEGs) involved in biological processes, cellular components, and molecular functions; 2492 upregulated DEGs and 1534 downregulated DEGs were identified. The results of the experimental study showed that mowing induced expression of DEGs in the phenylpropanoid biosynthesis pathway and increased the activity of PAL and 4CL. The upregulated DEGs in the starch and sucrose metabolism pathways and related enzyme activity alterations indicated that the sugar degradation rate increased. The DEGs in the nitrogen metabolism pathway biosynthesis of the amino acids, phenylpropanoid biosynthesis metabolism, and in the TCA pathway also changed after mowing. Hormone content and related gene expression was also altered in the tillering and secondary roots after mowing. When jasmonic acid and ethylene were used to treat the wheat after mowing, the regeneration rate increased, whereas abscisic acid inhibited regrowth. This study revealed the wheat growth patterns after mowing, which could lead to a better understanding of the development of dual-purpose wheat.

Funder

Yangling Seed Industry Innovation Center 2021 “Top ranking” technology project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3