Author:
Bao Yanyu,Zhou Qixing,Wang Yingying
Abstract
The adsorption characteristics of tetracycline by 2 soils including a clay-rich soil (cinnamon soil) and an iron oxide-rich soil (red soil) were investigated as a function of soil organic matter (SOM). SOM is the main adsorbent for tetracycline in the soil environment. The results indicated that the adsorption kinetics of tetracycline by the different soils with or without organic matter was described by the Elovich equation and the exponent equation. The adsorption of tetracycline on red soil was quite rapid and equilibrium could be reached after 5 h. In contrast, the concentration of tetracycline in cinnamon soil reached equilibrium after 11 h. The difference in equilibrium time in cinnamon soil and red soil was caused by their dominant components for adsorption, including clays, organic matter, and Al/Fe hydrous oxides. It took longer for the penetration of tetracycline into the interlayers between clays and organic matter in cinnamon soil, but tetracycline needed less time for adsorption through surface complexation on oxide surfaces of red soil. Removing SOM from soil markedly shortened the equilibrium time (7 h) of adsorption and reduced the equilibrium concentration (Cs) in cinnamon soil, but not in red soil, because of different dominant components for adsorption in the 2 natural soils. In natural and SOM-free soils, >98% of tetracycline in solution could be sorbed. The adsorption of tetracycline on natural and SOM-free soils was well described by Freundlich adsorption isotherms. Batch adsorption experiments showed that the adsorption of tetracycline on natural red soil was stronger than that on natural cinnamon soil. Adsorption capacity (KF) decreased with an increase in SOM removed from soil, which is attributed to the effect of tetracycline sorbed by SOM in different soils. However, SOM affected the adsorption intensity (n) of different soils diversely; there was a decrease for red soil and an increase for cinnamon soil. In particular, red soil with high Al/Fe hydrous oxides had higher adsorption affinities than cinnamon soil.
Subject
Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献