Sorption Behavior and Prediction of Tetracycline on Sediments from the Yangtze Estuary and Its Coastal Areas

Author:

Chen Haiying1234,Zheng Wenfang1,Zhang Fei23,Li Wenxi1,Shen Xiaoming234,Huang Haibo234,Shi Lei234,Shi Rui234,Zhang Shuai1,Lu Ming1

Affiliation:

1. School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

2. Nanjing Center, China Geological Survey, Nanjing 210016, China

3. East China Geological Science and Technology Innovation Center, Nanjing 210016, China

4. East China (Jiangsu) Public Technology Service Center of Environmental Geological Testing, Nanjing 210016, China

Abstract

Sediments represent the major sink of antibiotics in aquatic systems. However, few studies have proposed effective models that can predict the adsorption capacity of sediments through their physicochemical parameters. Here, 49 sediment samples were collected from different locations in the Yangtze Estuary and its adjacent coastal areas. The sediments were characterized, and their adsorption behavior towards tetracycline (TC) was investigated. It was found that both the Langmuir and Freundlich models fit the TC adsorption data well, and the sediments in the mud area showed the highest adsorption capacity. Subsequently, through correlation analysis for the adsorption coefficients and physicochemical parameters of sediments, 11 models were established to predict the adsorption coefficients (Kd), in which clay and cation exchange capacity played significant roles. When the salinity was increased from 0 to 32.79‰, the Freundlich adsorption coefficient (Kf) of TC for most sediments was reduced by more than75% (except sediment C6). Therefore, the methods provided herein can be helpful in predicting the sorption behavior of antibiotics with similar structures toward TC by sediments in this region.

Funder

National Natural Science Foundation of China

China Geological Survey

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3