The potential of diverse pastures to reduce nitrogen leaching on New Zealand dairy farms

Author:

Beukes P. C.,Gregorini P.,Romera A. J.,Woodward S. L.,Khaembah E. N.,Chapman D. F.,Nobilly F.,Bryant R. H.,Edwards G. R.,Clark D. A.

Abstract

The largest contributor to nitrogen (N) leaching from ryegrass-clover pasture based dairy farms is the surplus feed N excreted as urinary N (UN) onto pastures. Pastures consisting of mixtures of ryegrass, herbs and legumes (diverse pastures) have shown potential to yield similar DM, but with a lower N content and a higher water soluble carbohydrate : crude protein ratio compared with standard ryegrass–clover pastures. These diverse pastures have shown the potential to lower the UN excreted by dairy cows in short-term, late-lactation studies. This modelling study was designed to scale the results from component studies up to farm and over a full season to evaluate the potential of diverse pastures to become a suitable strategy for reducing N leaching on New Zealand dairy farms. The Molly cow model was tested against observed data from one indoor and one outdoor study where feeding diverse pasture resulted in UN (N excreted in urine g/day) reductions of 50% and 17%, respectively. The model predicted UN reductions of 23% and 17%. Farm-scale model scenarios, where 20% or 50% of the farm was sown with diverse pastures, resulted in 2% and 6% reductions in UN deposited onto paddocks. This reduction was smaller than expected with some system interactions related to seasonal feed supply, diet composition and total N intake being likely to play a role. The reduction in UN onto paddocks, together with a dilution effect from larger urine volumes per cow per day as a result of lower DM% of diverse pastures, resulted in N leaching reductions of 11% and 19% for the two scenarios, respectively. This potential to reduce N leaching needs to be evaluated further in the context of farm profitability when other aspects of diverse pastures such as yield, persistency, drought resistance and ability to extract N from the soil becomes part of the farm-system analysis.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3