Animal as the Solution: Searching for Environmentally Friendly Dairy Cows

Author:

Marshall Cameron J.ORCID,Gregorini Pablo

Abstract

There is increasing societal concern surrounding the environmental externalities generated from ruminant production systems. Traditional responses to address these externalities have often been system-based. While these approaches have had promising results, they have served to view the animal as a problem that needs solving, rather than as a potential solution. This review attempts to answer the question: can we breed animals that are more environmentally friendly to address environmental outcomes and satisfy consumer demand? This was done by exploring the literature of examples where animals have been specifically bred to reduce their environmental impact. The use of milk urea nitrogen breeding values has been demonstrated as a tool allowing for selective breeding of dairy cows to reduce nitrogen losses. Low milk urea nitrogen breeding values have been documented to result in reduced urinary nitrogen concentrations per urination event, which ultimately reduces the level of nitrogen that will be lost from the system. The ability to breed for low methane emissions has also shown positive results, with several studies demonstrating the heritability and subsequent reductions in methane emissions via selective breeding programs. Several avenues also exist where animals can be selectively bred to increase the nutrient density of their final product, and thus help to address the growing demand for nutrient-dense food for a growing human population. Animal-based solutions are permanent, cumulative, and often more cost-effective than system-based approaches. With continuing research and interest in breeding for more positive environmental outcomes, the animal can now start to be viewed as a potential solution to many of the issues faced by ruminant production systems, rather than simply being seen as a problem.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3