Agronomic biofortification and productivity of wheat with soil zinc and diazotrophic bacteria in tropical savannah

Author:

Jalal Arshad,Oliveira Carlos Eduardo da Silva,Freitas Leandro Alves,Galindo Fernando Shintate,Lima Bruno Horschut,Boleta Eduardo Henrique Marcandalli,da Silva Edson Cabral,Nascimento Vagner do,Nogueira Thiago Assis RodriguesORCID,Buzetti Salatiér,Teixeira Filho Marcelo Carvalho MinhotoORCID

Abstract

Agronomic biofortification of staple food with zinc (Zn) in combination with diazotrophic bacteria is one sustainable and feasible strategy to improve plant nutrition, nutrient use efficiency and production and combat Zn malnutrition in human beings. Wheat (Triticum aestivum L.) is a staple food of the global population and has a prospective role in agronomic Zn biofortification. In this context, the effect of diazotrophic bacterial inoculations in seeds (no inoculation – Control, Azospirillum brasilense, Bacillus subtilis and Pseudomonas fluorescens) in association with soil Zn application (without (0) and 8 kg/ha) was evaluated on Zn nutrition, growth, yield and Zn use efficiencies in wheat in the 2019 and 2020 cropping seasons. Soil Zn application in combination with P. fluorescens improved Zn concentration in the leaf (38.8 and 45.9%), shoot (25.0 and 31%) and grain (34.0 and 33.3%) with greater shoot dry matter (9.4 and 9.9%) and grain yield (20.3 and 20.6%) as compared to controls in 2019 and 2020 respectively. Also, inoculation of P. fluorescens with Zn application improved Zn shoot and grain accumulation, zinc use efficiency, recovery and utilisation efficiency. With daily wheat consumption, these improvements would be associated with a with higher estimated Zn intake for the human population globally and within Brazil. However, agro-physiological efficiency was increased with inoculation of Bacillus subtilis. Therefore, inoculation of P. fluorescens in association with soil Zn application is recommended for agronomic biofortification, and to increase productivity and Zn use efficiencies in wheat in the tropical savannah of Brazil.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Reference74 articles.

1. Alleviation of zinc deficiency in wheat inoculated with root endophytic fungus and rhizobacterium .;Rhizosphere,2021

2. Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat ().;International Journal of Agriculture and Biology,2015

3. Zinc status and its requirement by rural adults consuming wheat from control or zinc-treated fields.;Environmental Geochemistry and Health,2020

4. Köppen’s climate classification map for Brazil.;Meteorologische Zeitschrift,2013

5. Phosphorus and zinc fertilization improve zinc biofortification in grains and straw of coarse vs. fine rice genotypes.;Agronomy,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3