Desiccation-induced ultrastructural and biochemical changes in the leaves of the resurrection plant Myrothamnus flabellifolia

Author:

Moore John P.,Hearshaw Meredith,Ravenscroft Neil,Lindsey George G.,Farrant Jill M.,Brandt Wolf F.

Abstract

Light microscopy and low-temperature scanning electron microscopy were used to systematically compare the surface and internal ultrastructures of hydrated and desiccated leaves of the resurrection plant Myrothamnus flabellifolia (Welw.). This revealed that leaf tissue underwent considerable shrinkage and collapse on desiccation but was supported by a framework of vascular and sclerenchymous tissue, which is responsible for the fan-like shape of the leaves. In addition, the leaf ribs were covered with wax and an internal wax cuticle was observed. Biochemical analysis showed that the cyanidin 3-glucoside content increased on desiccation as did the trehalose and sucrose contents. Salt deposits were observed at the apices of desiccated leaves in the proximity of hydathode-like structures. We propose that this might regulate the leaf salt content since decreased intracellular cation concentration was observed in desiccated leaves. We believe that these unique adaptations contribute to the remarkable desiccation-tolerance properties of this plant.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3