Photoperiod during stem elongation in wheat: is its impact on fertile floret and grain number determination similar to that of radiation?

Author:

González Fernanda G.,Slafer Gustavo A.,Miralles Daniel J.

Abstract

Increasing duration of stem elongation by exposure to short photoperiod would result in higher spike dry weight at anthesis, which is positively associated with the number of fertile florets and grains in wheat. However, it is not easy to determine whether photoperiod effects on fertile florets and grains are only mediated by assimilate supply to the growing spike when spike weight variation is attained only with photoperiod treatments. The aim of this study was to determine whether photoperiod effects on number of fertile florets and grains may be direct, that is, not mediated by assimilate supply, by comparing the magnitude of photoperiod effects with those of shading the canopy. Spike dry weight at anthesis was changed through the factorial combination of different photoperiod (natural and 6 h extended photoperiod) and shading (un-shaded and 67 ± 3% shaded) treatments during stem elongation of Buck Manantial, a cultivar known for its photoperiod sensitivity in this phase. Both treatments modified spike dry weight at anthesis and the number of fertile florets and grains, independently. When duration of stem elongation was lengthened by exposure to natural photoperiod and when incident radiation was high, spike dry weight at anthesis increased by 33% (NP+0 v. NP+6) and 27% (un-shaded v. shaded), respectively. The number of fertile florets increased similarly to spike dry weight (34% NP+0 v. NP+6 and 28% un-shaded v. shaded) resulting in higher number of grains. Most photoperiod effects on the number of fertile florets and, consequently, on the number of grains, were mediated by assimilate supply to the growing spike as the same relationship between the number of fertile florets and spike dry weight at anthesis was observed for photoperiod and shading treatments (R2 = 0.99, P<0.05).

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3