The Impact of a Six-Hour Light–Dark Cycle on Wheat Ear Emergence, Grain Yield, and Flour Quality in Future Plant-Growing Systems

Author:

Clauw Helena1ORCID,Van de Put Hans1,Sghaier Abderahman1ORCID,Kerkaert Trui1,Debonne Els2ORCID,Eeckhout Mia2ORCID,Steppe Kathy1ORCID

Affiliation:

1. Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium

2. Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium

Abstract

Cultivating wheat (Triticum aestivum) in a closed environment offers applications in both indoor farming and in outer-space farming. Tailoring the photoperiod holds potential to shorten the growth cycle, thereby increasing the annual number of cycles. As wheat is a long-day plant, a night shorter than a critical length is required to induce flowering. In growth chambers, experiments were conducted to examine the impact of a 6 h light–dark cycle on the timing of wheat ear emergence, grain yield, and flour quality. Under equal daily light-integral conditions, the 6 h light–dark cycle promoted growth and development, resulting in accelerated ear emergence when compared to a 12 h cycle, additionally indicating that 12 h of darkness was excessive. To further stimulate heading and increase yield, the 6 h cycle was changed at the onset of stem elongation to a 14 h–10 h, mimicking spring conditions, and maintained until maturity. This successful transition was then combined with two levels of light intensity and nutrient solution, which did not significantly impact yield, while tillering and grain ripening did increase under higher light intensities. Moreover, it enabled manipulation of the baking quality, although lower-end falling numbers were observed. In conclusion, combining a 6 h light–dark cycle until stem elongation with a 14 h–10 h cycle presents a promising strategy for increasing future wheat production in closed environments. The observation of low falling numbers underscores the importance of factoring in flour quality when designing the wheat-growing systems of the future.

Funder

Flanders’ FOOD

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3