Persistence traits in perennial pasture grasses: the case of phalaris (Phalaris aquatica L.)

Author:

Culvenor R. A.,Simpson R. J.

Abstract

Persistence is consistently claimed by Australian farmers as a high priority for perennial grasses in long-term pastures. Phalaris (Phalaris aquatica L.) is a productive perennial grass with proven persistence in south-eastern Australia. Nevertheless, factors that determine the persistence of pasture species in southern Australia related to climate (drought), soil (acidity), grazing pressure, and, importantly, their interaction can reduce persistence of phalaris and other species in various situations. These factors and their interactions are discussed in this review, and strategies to improve persistence with emphasis on plant breeding approaches are considered, with the most durable outcomes achieved when breeding and management options are employed concurrently. Two examples of breeding to improve persistence traits in phalaris are described. A program to improve acid-soil tolerance resulted first in the release of cv. Landmaster, and recently Advanced AT, which is the most aluminium (Al)-tolerant cultivar of phalaris to date. It was bred by recurrent selection on acid soils in a population containing genes from a related, more Al-tolerant species, P. arundinacea. The higher Al tolerance of cv. Advanced AT is of most benefit in more assured establishment on acid soils under variable moisture conditions and confers improved flexibility of sowing date. Cultivar Holdfast GT was bred to address complaints of poor persistence under heavy grazing by cultivars of the highly productive, winter-active type, since high grazing tolerance is needed to achieve profitable returns from developed pastureland. Evidence of good persistence under grazing for cv. Holdfast GT and possible tradeoffs with productivity are discussed. Maintaining high productivity under a predicted higher incidence of drought stress (climate change) and increasing areas of acid soils presents ongoing challenges for persistence in pastures.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3