Seed Germination Model for Eucalyptus delegatensis Provenances Germinating under Conditions of Variable Temperature and Water Potential

Author:

Battaglia M.

Abstract

This paper develops a population-based threshold model to describe the combined action of sub- and supra-optimal temperatures, water stress and the release of dormancy by cool-moist stratification on the germination of seeds of Eucalyptus delegatensis R.T. Baker. Separate models were fitted for seed samples collected from five climatically differing regions. The model presumes that the time to germination of a given seed fraction is inversely proportional to the difference between the actual level of a given germination factor and the factor threshold. The model then assumes that variation in this factor threshold within a seed population as a whole can be characterised by a normal, or log-normal, distribution. By using physiological time rather than clock time as a metric, the model was extended to describe germination under varying conditions in the field. A number of applications of the model were demonstrated. The correlation of model parameters with regional climate was tested and it was concluded that site temperature affected both the mean and variation in base population sensitivities to stratification-dose but that site rainfall affected only the mean base population sensitivity to water stress with all populations having a common variance. Examination of the model parameters relating to the release of dormancy indicated that the increased germination rate associated with stratification could be accounted for by progress towards germination made at stratifying temperatures. Finally, the model was used to examine the fundamental regeneration niche of E. delegatensis and it was concluded that abundant germination in the field could only be expected when the soil water potential is above –0.4 MPa and temperatures exceed 7.5°C. The model is presented as a flexible framework that allows for the prediction of field germination and as a useful tool for exploring seed germination processes, and the fundamental regeneration niche of the species. The modelling framework is easily modified to include additional factors and factor interactions applicable to other situations and species.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3