Modelling seed germination response to temperature inEucalyptusL'Her. (Myrtaceae) species in the context of global warming

Author:

Cochrane Anne

Abstract

AbstractSeed germination is vital for persistence of many plant species, and is linked to local environmental conditions. Small increases in temperature during this critical life history transition may threaten species by altering germination timing and success. Such changes in turn may influence population dynamics, community composition and the geographic distributions of species. In this investigation, a bi-directional temperature gradient plate was used to profile thermal constraints for germination in 26 common, threatened and geographically restrictedEucalyptusspecies (Myrtaceae) from southern Western Australia. These observed data were used to populate models to predict optimum germination responses (mean time to germination, germination timing and success) under current (1950–2000 averages) and future (2070 high greenhouse gas emission climate scenario) mean monthly minimum and maximum temperatures. Many species demonstrated wide physiological tolerance for high germination temperatures and an ability to germinate outside current and forecast future autumn–winter wet season temperatures, suggesting that climatic distribution is a poor proxy for thermal tolerance forEucalyptusseed germination. Germination for some species is predicted to decline under forecast conditions, but the majority will maintain or improve germination particularly during the cooler winter months of the year. Although thermal tolerance may benefit persistence of manyEucalyptusspecies in southern Western Australia as warming becomes more severe, large rainfall declines are also forecast which may prove more detrimental to plant survival. Nonetheless, this framework has the potential to identify seed resilience to heat stress in an early life history phase and hence species vulnerability to one characteristic of forecast environmental change.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Reference50 articles.

1. Modelling the potential impact of climate variability and change on species regeneration potential in the temperate forests of S outh‐ E astern A ustralia

2. CLIMATE CHANGE AND FORESTS OF THE FUTURE: MANAGING IN THE FACE OF UNCERTAINTY

3. Effects of soil moisture stress on the growth of seedlings of three eucalypt species. 1. Seed germination;Bachelard;Australian Forest Research,1985

4. Byrne M. , Prober S. , McLean E. , Steane D. , Stock W. , Potts B. and Vaillancourt R. (2013) Adaptation to climate in widespread eucalypt species. Final report, p. 86. National Climate Change Adaptation Research Facility, Gold Coast, Australia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3