Implications of thin laminations on pore structure of marine shale reservoir: Goldwyer Formation case study from Western Australia

Author:

Iqbal Muhammad Atif,Rezaee Reza,Smith Gregory,Mandal Partha Pratim

Abstract

The pore structure of a shale reservoir is a major control on hydrocarbon potential, yet shale pore systems are complex and affected by various factors. This paper focuses on the differences in pore structure between thinly laminated and massive black shale (MBSh) beds in the Ordovician Goldwyer-III shale, Canning Basin, Western Australia. A multiscale approach included image logs, core descriptions, thin sections, scanning electron microscope and X-ray diffraction analysis with low-pressure nitrogen and carbon dioxide gas adsorption tests. The results indicate that the Goldwyer shale comprises laminated beds of quartz silt and shale with thin beds of organic-rich clay, plus minor interbedded carbonate bands or concretions. The pore types are subjected to rock type, and the thinly laminated shale (LSh) is enriched in intergranular and intragranular pores. In contrast, the MBSh mainly comprises organic matter pores. The LSh is slightly enriched in mesopores but has negligible micropores. The mesopores are wedge-shaped and associated with an inorganic matrix of clay and pyrite. In comparison, the MBSh contains both mesopores and micropores. These pores are slit-like and related to organic matter and clay. The clay content and total organic carbon fluctuations control the development of mesopores and micropores in both the laminated and MBSh beds in the Goldwyer-III shale. The MBSh layers are suggested as the most important rock types for fluid flow via pore systems due to higher total pore volume, specific surface area and gas adsorption capacity.

Publisher

CSIRO Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3